Chemistry of Natural Compounds, Bioorganic, and Biomolecular Chemistry

Study of alkaloids of the Siberian and Altai flora 9.* Synthesis of amino derivatives of elatidine

J. Ganbaatar, a S. A. Osadchii, b E. E. Shults, b * and G. A. Tolstikovb

^aInstitute of Chemistry and Chemical Technology of Mongolian Academy of Sciences, 54-56 ul. Jukova, 211051 Ulan-Bator, Mongolia.

Fax: (109 7611) 32 1993. E-mail: inst_chemistry@arvis.ac.mn

^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent´eva, 630090 Novosibirsk, Russian Federation.

Fax: +7 (383 2) 34 4752. E-mail: schultz@nioh.nsc.ru

New secondary-tertiary diamines were prepared from elatidal imines with primary amino alcohols, derivatives of natural amino acids of the *S*-series. *N*-Methylation of the diamines yielded bi-tertiary diamines unable to undergo quaternization with MeI due to steric hindrance.

Key words: diterpene alkaloids, elatidine, elatidal, aldimines, diamines.

This study continues a series of works dealing with the synthesis of 18-amino-18-deoxy elatidine derivatives on the basis of elatidal (1). The initial compounds used were elatidal imines with the S-alanine, S-valine, and S-tyrosine methyl esters and with S-valinol, S-tyrosinol, and S-methioninol (2—7), which are formed in high yields in the condensation of elatidal 1 with the appropriate amines (Scheme 1).

According to ¹H NMR spectroscopy, each imine **2—4** formed upon complete conversion of the initial elatidal **1** is

a single geometric isomer, presumably, with the *E*-configured imino group, because the steric restrictions associated with the imine bond formation are less pronounced. An attempt to reduce the C=N bond in imine **2** by NaBH₄ resulted in a complex mixture of products. Obviously, this is due to the side processes involving the ester group. A satisfactory yield of diamine **8** (71%) was attained in the catalytic hydrogenation (H₂, Pd/C) of imine **2**. The reduction of imines **5**—7 on treatment with NaBH₄ gave rise to the corresponding diamines **9**—**11**, containing both secondary and tertiary amino groups in one molecule. *N*-Methylation of the secondary-tertiary

^{*} For Part 8, see Ref. 1.

Scheme 1

Reagents, conditions, and product yields: *i.* RNH₂ ($-H_2O$): (a) *S*-alanine methyl ester, CHCl₃, **2** (95%); (b) *S*-valine methyl ester, CHCl₃, **3** (92%); (c) *S*-tyrosine methyl ester, CHCl₃, **4** (87%); (d) *S*-valinol, MeOH, **5** (90%); (e) *S*-tyrosinol, MeOH, **6** (92%); (f) *S*-methioninol, MeOH, **7** (94%); *ii*. (g) H₂, Pd/C, EtOH, **8**, (71%); *iii*. NaBH₄, MeOH: (h) **9** (80%); (i) **10** (82%); (j) **11** (81%); *iv*. MeI then NH₄OH (-HI): (k) **12** (90%); (l) **13** (91%); (m) **15** (85%).

diamines 9 and 10 yielded bi-tertiary diamines 12 and 13, which are not quaternized on treatment with methyl iodide. It is known³ that elatidine, containing a tertiary N atom in the ring, cannot be converted into iodomethylate. Apparently, this is due to steric hindrance to the formation of the tetracoordinated N atom. We showed that N-methylation of 18-methylamino-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (14) yields 18-dimethylamino derivative (15). Despite the fact that the exocyclic N atom in compound 15 bears substituents (methyl groups) that are less bulky than those in the similar fragment of compounds 12 and 13, diamine 15 still does not undergo quaternization with methyl iodide. Apparently, the lack of coordination reactivity in the exocyclic tertiary N atom of compounds 12, 13, and 15 is also due to the above reasons.

Thus, we synthesized elatidal imines with S-alanine, S-valine, and S-tyrosine methyl esters and with S-valinol, S-tyrosinol, and S-methioninol. Catalytic hydrogenation of elatidal imine with the S-alanine methyl ester and the NaBH₄ reduction of elatidal imines with S-valinol, S-tyrosinol, and S-methioninol furnished the corresponding amino derivatives of elatidine containing both secondary and tertiary amino groups in one molecule. N-Methylation of these diamines yielded bi-tertiary diamines, which are not quaternized on treatment with methyl iodide due to steric hindrance.

Experimental

IR spectra were recorded on a Vector 22 spectrometer and UV spectra were measured on a Specord UV-VIS spectropho-

tometer. The molecular weights and the elemental compositions of new compounds were determined using a Finnigan MAT high-resolution mass spectrometer (version MS 8200, EI, 70 eV). Melting points were measured on a Koefler stage.

The optical rotation was measured on a Polamat A polarimeter (Carl Zeiss, $\lambda = 578$ nm). Specific rotation was expressed in (deg mL) (g dm)⁻¹, and the concentrations of solutions were expressed in g (100 mL)⁻¹. The ¹H and ¹³C NMR spectra of tyrosinol oxalate and compounds 9, 10, and 12 were recorded on a Bruker AC-400 instrument (¹H, 400.13 MHz; ¹³C, 100.61 MHz) and the spectra of other compounds were measured on a Bruker AC-200 spectrometer (¹H, 200.13 MHz; ¹³C, 50.32 MHz) for 10% solutions of compounds (in CDCl₃, unless indicated otherwise) at 25 °C using the deuterium signal of the solvent for resonance stabilization. The chemical shifts (δ) were referred to the signals of internal CHCl₃: δ_H 7.24 and $\delta_{\rm C}$ 76.90. The signal multiplicity in the ¹³C NMR spectra were determined by standard procedures⁴ in the J-modulation mode (JMOD) and with off-resonance proton irradiation. The ¹³C NMR chemical shifts for newly synthesized compounds are presented in Table 1. The ¹H and ¹³C NMR signals were assigned using data for model compounds: elatidine⁵ and the initial S-valinol, S-tyrosinol, and S-methioninol, and S-alanine, S-valine, and S-tyrosine methyl esters. Since the assignment of all ¹H NMR signals is a complicated task, only the data of characteristic signals are presented for the newly synthesized compounds.

Freshly distilled solvents and pure grade reagents were used in the work, together with the following initial compounds.

Elatidal (m.p. 146.5-148.0 °C (Et₂O), $[\alpha]_{578}^{20}$ -17.2 (c 5, CHCl₃)) was prepared by a previously described procedure. S-Alanine methyl ester synthesized by a known procedure⁷ from S-alanine produced at the pilot plant of the Institute of Bioorganic Chemistry of the Ukrainian Republic had b.p. 38 °C (14 Torr) (cf. Ref. 8: b.p. 38 °C (14 Torr)). 1 H NMR, δ : 0.91 (d, 3 H, 3'-Me, J = 7 Hz); 3.12 (q, 1 H, C(2)H, J = 7 Hz); 3.31 (s,

Atom	δ									
	2	3	4*	8	9	10	11	12	13	15
C(1)	83.1	83.2	84.5	83.0	83.2	83.2	83.1	83.4	83.1	82.5
C(2)	25.8	25.6	26.7	26.1	26.4	26.3	26.2	26.4	26.4	25.6
C(3)	32.5	32.6	33.0	31.6	32.2	32.0	32.0	32.5	32.6	31.7
C(4)	42.4	42.7	43.6	36.6	37.0	36.9	36.8	39.0	38.5	39.3
C(5)	53.1	53.3	53.2	52.5	53.8	53.5	54.8**	48.4	48.2	54.2
C(6)	89.6	89.4	90.3	89.0	89.6	89.4	89.6	91.8	89.9	89.1
C(7)	91.8	91.6	93.3	91.7	91.8	91.9	91.7	91.8	91.7	90.9
C(8)	83.3	83.4	84.7	82.9	83.2	83.2	83.0	83.2	83.3	82.8
C(9)	39.7	39.8	41.1	39.4	39.6	39.6	39.4	38.3	38.2	39.0
C(10)	48.0	48.1	49.2	48.0	48.4	48.2	48.2	39.5	39.5	47.6
C(11)	49.3	49.3	50.6	49.5	49.4	49.5	49.4	49.6	49.4	48.8
C(12)	27.7	27.6	28.9	27.4	27.6	27.6	27.5	27.7	27.6	27.1
C(13)	38.3	38.4	39.6	38.2	38.3	38.2	38.2	36.3	36.6	37.5
C(14)	81.4	81.5	83.1	81.2	81.4	81.4	81.2	81.4	81.3	80.7
C(15)	34.6	34.7	36.3	34.4	34.1	34.2	34.1	34.1	34.0	33.4
C(16)	81.1	81.2	82.5	81.2	83.3	81.4	81.2	81.3	81.3	79.0
C(17)	64.1	64.1	65.1	63.9	64.5	64.3	64.2	64.3	64.3	62.8
C(18)	170.6	171.1	174.1	54.2	54.9	54.7	54.7	60.6	61.1	72.4
C(19)	52.3	52.2	53.3	54.2	54.6	54.1	53.7	54.9	54.9	54.4
$N-\underline{C}H_2CH_3$	50.2	50.1	51.3	50.0	50.3	50.3	50.1	50.3	50.3	49.6
$N-CH_2CH_3$	13.6	13.7	14.2	13.5	13.7	13.7	13.6	13.7	13.7	13.0
OCH ₂ O	93.2	93.3	94.4	93.0	93.0	93.0	92.9	92.9	92.9	92.6
1-OMe	55.0	55.1	55.6	54.7	54.9	54.9	55.8	54.9**	54.3	54.5
6-OMe	57.4	57.5	57.7	57.0	57.6	57.5	58.5	57.6	57.5	57.1
14-OMe	59.1	59.1	59.5	58.1	59.0	58.7	58.8	59.2	59.2	59.2
16-OMe	55.8	55.9	56.3	55.7	56.0	55.9	57.4	55.9	55.9	55.5
C(1')	172.2	171.9	173.4	175.8	65.2	60.9	53.5**	72.6	68.8	_
C(2')	67.7	80.4	76.1	57.3	28.8	37.2	30.9	28.1	31.0	_
C(3')	19.0	31.0	39.3	18.7	18.3	62.2	30.7	19.7	63.6	_
C(4')	_	16.3	_	_	19.3	_	62.6	22.0	_	_
C(5')	_	19.2	_	_	60.2	_	_	66.3	_	_
C(1")	_	_	128.9	_	_	129.3	_	_	129.8	_
C(2")	_	_	131.8	_	_	115.4	_	_	115.4	_
C(3")	_	_	116.1	_	_	129.9	_	_	129.6	_
C(4")	_	_	157.2	_	_	155.0	_	_	154.7	_
C(5")	_	_	116.1	_	_	129.9	_	_	129.6	_
C(6")	_	_	131.8	_	_	115.4	_	_	115.4	_
CO_2CH_3	51.7	51.5	52.5	51.2	_	_	_	_	_	_
NMe	_	_	_	_	_	_	_	54.6**	54.3	_
NMe_2	_	_	_	_	_	_	_	_	_	56.4
SMe	_	_	_	_	_	_	15.2	_	_	_

^{*} Solution in CD₃OD.

3 H, OMe). 13 C NMR, δ : 175.5 (C(1)); 48.5 (C(2)); 19.1 (C(3)); 50.2 (OMe). *S*-Alanine methyl ester hydrochloride synthesized by the same procedure⁷ had [α]₅₇₈ 20 +7 (c 2, MeOH) (cf. Ref. 9: [α]_D 20 +9.0 (c 2, MeOH)).

S-Valine methyl ester synthesized⁷ from S-valine had b.p. 80 °C (40 Torr), $[\alpha]_{578}^{20}$ +42.1 (c 8.6, anhydrous MeOH) (cf. Ref. 7: b.p. 80 °C (40 Torr)). ¹H NMR, δ: 0.72 and 0.78 (both d, each 3 H, C(3)Me₂, J = 7 Hz); 1.84 (septet d, 1 H, C(3)H, J = 7 and J = 5 Hz); 3.12 (d, 1 H, C(2)H, J = 5 Hz); 3.54 (s, 3 H, OMe). ¹³C NMR, δ: 175.0 (C(1)); 59.0 (C(2));

31.3 (C(3)); 18.2 and 16.3 (2 Me). S-Valine methyl ester hydrochloride synthesized by the same procedure⁷ had $[\alpha]_{578}^{20}$ +14 (c 3.9, H₂O) (cf. Ref. 7: $[\alpha]_D^{23}$ +16 (c 4.12, H₂O)).

S-Tyrosine methyl ester synthesized⁷ from *S*-tyrosine (Kiev plant of Medical Preparations) had m.p. 135–136 °C (EtOAc), $[\alpha]_{578}^{20}$ +30.5 (*c* 3.1, MeOH) (*cf.* Ref. 10: m.p. 135–136 °C (EtOAc), $[\alpha]_{D}^{20}$ +25.75 (*c* 3.1, MeOH)). ¹H NMR, δ: 2.84 (dd, 1 H, J = 12.5 and J = 7 Hz) and 2.93 (dd, 1 H, J = 12.5 and J = 6.5 Hz) (C(3)H₂); 3.63 (m, 1 H, C(2)H); 6.74 (dm, 2 H, J = 8 Hz) and 7.01 (dm, 2 H, J = 8 Hz) (AA´BB´ system, H(3´),

^{**} The chemical shifts of the signals may have to be interchanged.

H(5') and H(2'), H(6')). 13 C NMR, δ : 176.4 (C(1)); 56.8 (C(2)); 40.8 (C(3)); 52.3 (OMe); 128.8 (C(1')); 116.4 (C(2'), C(6')); 131.3 (C(2'), C(5')); 157.4 (C(4')).

S-Methionine methyl ester, ¹¹ b.p. 124–125 °C (11 Torr) (*cf.* Ref: ¹¹ b.p. 124–125 °C (11 Torr)). ¹H NMR, δ: 1.48 (br.s, 2 H, NH₂); 1.70–2.00 (m, 2 H, C(3)H₂); 2.08 (s, 3 H, SMe); 2.60 (t, 2 H, C(4')H₂, J = 7.3 Hz); 3.56 (dd, 1 H, C(2')H, J = 8 and J = 5 Hz); 3.71 (s, 3 H, OMe). ¹³C NMR, δ: 175.24 (C(1)); 52.30 (C(2)); 29.45 (C(3)); 33.05 (C(4)); 51.0 (OMe) and 14.29 (SMe). The hydrochloride with the composition C₆H₁₃NO₂S·HCl, prepared by a previously described procedure, ¹¹ had [α]₅₇₈²⁰ +27 (c 5, H₂O) (cf. Ref. 11: [α]_D¹⁹ +26.8 (c 5, H₂O)).

S-Valinol prepared by a known procedure ¹² from *S*-valine (Reanal) had m.p. 31-32 °C, b.p. 75 °C (6 Torr), $[\alpha]_{578}^{33}+17$ (*c* 11, EtOH) (*cf.* Ref. 13: m.p. 31-32 °C, b.p. 75 °C (6 Torr), Ref.:⁷ $[\alpha]_{578}^{33}+17.0$ (*c* 11, EtOH)). ¹H NMR, δ: 0.416 and 0.424 (both d, each 3 H, C(3)Me₂, J=6.8 Hz); 1.12 (m, 1 H, C(3')H); 2.05 (m, 1 H, C(2)H); 2.79 (dd, 1 H, J=10.5 and J=8.3 Hz), 3.11 (dd, 1 H, J=10.5 and J=3.7 Hz) (CH₂OH). ¹³C NMR, δ: 63.7 (C(1)); 57.6 (C(2)); 30.0 (C(3)); 17.3 and 18.4 (2 Me).

S-Tyrosinol was prepared by reduction of the S-tyrosine methyl ester with LiAlH₄ in ether by a previously described procedure¹⁴ (cf. Ref. 15), which we modified in the following way. Excess CO₂ was passed through a methanolic solution of crude tyrosinol to precipitate Li₂CO₃ and Al₂(CO₃)₃. The precipitated carbonates were separated by centrifugation, the supernatant was concentrated in vacuo, and the residue was dried at 50 °C (3 Torr) to give pure S-tyrosinol as a thick oil. ¹H NMR (CD_3OD) , δ : 2.48 (dd, 1 H, C(3)H_a, J = 14 and J = 8 Hz); 2.72 (dd, 1 H, C(3)H_b, J = 14 and J = 6 Hz); 3.00 (m, 1 H, C(2)H); 3.38 (m, 1 H, C(1)H_a); 3.57 (dd, 1 H, C(1)H_b, J = 11 and J =4 Hz); 6.77 (m, 2 H, C(2')H and C(6')H) and 7.03 (m, 2 H, C(3')H and C(5')H). ¹³C NMR, δ : 66.6 (C(1)); 55.5 (C(2)); 39.8 (C(3)); 130.1 (C(1')), 131.2 (C(2'), C(6')); 116.7 (C(3'), C(5')); 157.5 (C(4')). S-Tyrosinol oxalate $(C_9H_{13}NO_2)_2 \cdot H_2C_2O_4$, prepared by a known method, ¹⁴ had $\left[\alpha\right]_{578}^{20}$ -20 (c 1, H₂O) (cf. Ref. 14: $[\alpha]_D^{17}$ –20 (c 1, H₂O)). The ¹H NMR spectrum of the oxalate (D₂O), δ : 3.10 (dd, 1 H, J = 14.0 and J = 7.5 Hz) and 3.14 (dd, 1 H, J = 14.0 and J = 7.0 Hz) (C(3)H₂); 3.80 (m, 1 H, C(2)H); 3.85 (dd, 1 H, J = 12.0 and J = 6.7 Hz) and 4.03 $(dd, 1 H, J = 12.0 \text{ and } J = 3.4 \text{ Hz}) (C(1)H_2); 7.13, 7.42 \text{ (both dm,})$ each 2 H, AA'BB' system, H(3'), H(5') and H(2'), H(6'), J =8 Hz). ¹³C NMR, δ: 61.45 (C(1)); 55.30 (C(2)); 34.61 (C(3)); 128.18(C(1')); 131.60 (C(2'), C(6')); 116.76 (C(3'), C(5'));155.66 (C(4')) and 174.05 (2 CO_2^-).

S-Methioninol synthezised ¹⁶ from *S*-methionine methyl ester had b.p. 120 °C (3 Torr), $[\alpha]_{578}^{20}$ –10 (*c* 1.5, EtOH) (*cf*. Ref. 16: b.p. 104—108 °C (0.05 Torr), Ref. 17: b.p. 110—132 °C (5 Torr), $[\alpha]_D^{21}$ –9.7 (*c* 1.5, EtOH)). ¹H NMR, δ: 1.40 (m, 2 H, C(3)H₂); 1.87 (s, 3 H, SMe); 2.34 (m, 2 H, C(4)H₂); 2.71 (m, 1 H, C(2)H); 3.08 (dd, 1 H, C(1)H_a, *J* = 10 and *J* = 7 Hz); 3.42 (dd, 1 H, C(1)H_b, *J* = 10 and *J* = 4 Hz). ¹³C NMR, δ: 66.0 (C(1)); 51.8 (C(2)); 33.0 (C(3)); 30.8 (C(4)) and 15.2 (SMe).

18-Methylamino-7,8-methylenedioxy- 1α ,6 β ,14 α ,16 β -tetramethoxy-20-ethylaconitane (14) was prepared by a known method.²

Imines 2—7 were synthesized by a general procedure.² The spectral or analytical characteristics of imines 5—7 were not determined.

18-(E)-[1S-Methoxycarbonyl)ethylimino]-7,8-methylene-dioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (2). Thick oil, $[\alpha]_{578}^{20}$ –55.5 (c 3.1, MeOH). Found, m/z: 562.3256 [M]⁺. C₃₀H₄₆N₂O₈. Calculated: M 562.3254. ¹H NMR, δ: 0.98 (t, 3 H, NCH₂CH₃); 1.31 (d, 3 H, C(3')H₃, J = 7 Hz); 3.13, 3.18, 3.25 and 3.33 (all s, each 3 H, 1-, 6-, 14- and 16-OMe); 3.61 (s, 3 H, CO₂Me); 4.93 and 4.96 (both s, each 1 H, OCH₂O); 7.40 (s, 1 H, C(18)H). IR (KBr), ν/cm⁻¹: 731, 940, 962, 1007, 1051, 1090, 1123, 1379, 1450, 1662 (C=N), 1743 (C=O), 2822, 2878, 2933 and 2973.

18-(*E***)-(2-Methyl-1***S***-methoxycarbonylpropylimino)-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (3).** Amorphous powder, $[\alpha]_{578}^{20}$ –60.5 (*c* 3.7, MeOH). Highresolution MS, m/z: 590.3568 [M]⁺. $C_{32}H_{50}N_2O_8$. Calculated: M 590.3567. ¹H NMR, δ: 0.77 and 0.82 (both d, each 3 H, C(2')Me₂ J = 7 Hz); 1.00 (t, 3 H, NCH₂CH₃); 3.10, 3.20, 3.27 and 3.35 (all s, each 3 H, 1-, 6-, 14-, and 16-OMe); 3.63 (s, 3 H, CO₂Me); 4.94 and 4.97 (both s, each 1 H, OCH₂O); 7.35 (s, 1 H, C(18)H). IR (KBr), v/cm^{-1} : 960, 982, 1015, 1037, 1081, 1122, 1140, 1207, 1309, 1463, 1672 (C=N), 1743 (C=O), 2822, 2882, 2918 and 2974.

18-(*E*)-[2-(4-Hydroxyphenyl)-1*S*-methoxycarbonylethylimino]-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (4). Amorphous powder, $[\alpha]_{578}^{20}$ -72.5 (*c* 3.8, MeOH). Found (%): C, 65.27, 65.43; H, 8.07, 8.23; N, 4.18, 4.08. C₃₆H₅₀N₂O₉. Calculated (%): C, 66.02; H, 7.71; N, 4.28. H NMR (CD₃OD), δ: 1.09 (t, 3 H, NCH₂CH₃, J = 7 Hz); 3.13, 3.26, 3.30 and 3.36 (all s, each 3 H, 1-, 6-, 14- and 16-OMe); 3.73 (s, 3 H, CO₂Me); 4.98 and 5.00 (both s, each 1 H, OCH₂O); 6.71 (dm, 2 H, J = 8 Hz) and 6.94 (dm, 2 H, J = 8 Hz) (AA´BB´ system, H(3″), H(5″) and H(2″), H(6″), respectively); 7.06 (s, 1 H, C(18)H). IR (KBr), v/cm^{-1} : 935, 961, 980, 1038, 1089, 1129, 1171, 1201, 1270, 1333, 1380, 1446, 1517, 1615, 1660 (C=N), 1742 (C=O), 2821, 2878, 2931, 2973. UV (EtOH), $λ_{max}/nm$ (loge): 226 (3.83) and 279 (3.08).

18-[(1S-Methoxycarbonyl)ethylamino]-7,8-methylenedioxy- $1\alpha,6\beta,14\alpha,16\beta$ -tetramethoxy-20-ethylaconitane (8). A solution of compound 2 (0.75 g, 1.34 mmol) in 7 mL of EtOH was hydrogenated over Pd supported on activated carbon (0.90 g of the IKT-3-25 catalyst, Pd content 0.25%) 18 at 20 °C (760 Torr) until a theoretical amount of hydrogen has been absorbed. The catalyst was filtered off and washed with EtOH (2×7 mL). The solvent was removed from the filtrate in vacuo (bath temperature 50 °C) and the residue was dissolved in 2 mL of CHCl₂ and subjected to preparative TLC on Al₂O₃ (5/40 µm Chemapol, Czechia) containing 1% luminophore K-35 and 3% Na₂CO₃ in the Bu^tOMe-CHCl₃ solvent system (9:1, v/v). The UV-absorbing band of the sorbent with $R_{\rm f}$ 0.87 was collected. The target product was eluted with the same solvent system. Removal of the solvent from the eluate and drying of the residue at 50 °C (3 Torr) gave 0.54 g (71%) of compound $\bf 8$ as an amorphous powder, $[\alpha]_{578}^{20}$ +4.5 (c 4.4, CHCl₃). Found, m/z: 564.3417 [M]⁺. C₃₀H₄₈N₂O₈. Calculated: M 564.3410. ¹H NMR, δ: 0.90 (t, 3 H, NCH₂C $\underline{\text{H}}_3$, J = 7 Hz); 1.12 (d, 3 H, $C(2')H_3$, J = 7 Hz); 3.10, 3.13, 3.21 and 3.27 (all s, each 3 H, 1-, 6-, 14-, and 16-OMe); 4.91 (s, 2 H, OCH₂O). IR (KBr), v/cm^{-1} : 728, 753, 964, 1010, 1089, 1126, 1171, 1200, 1298, 1385, 1446, 1738 (C=O), 2752, 2822, 2930 and 3337 (NH).

Diamines 9-11 were prepared by reducing imines 5-7 with NaBH $_4$ according to the general procedure of imine reduction.²

18-(1*S*-Hydroxymethyl-2-methylpropylamino)-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (9). Thick oil, $[α]_{578}^{20}$ +10 (c 2.0, CHCl₃). Found, m/z: 564.3788 [M]⁺. C₃₁H₅₂N₂O₇. Calculated: M 564.3774. ¹H NMR, δ: 0.83 and 0.90 (both d, each 3 H, C(2′)Me₂, J = 6.8 Hz); 0.98 (t, 3 H, NCH₂CH₃, J = 7.1 Hz); 3.19, 3.28, 3.31 and 3.37 (all s, each 3 H, 1-, 6-, 14-, and 16-OMe); 4.98 and 5.01 (both s, each 1 H, OCH₂O). IR (KBr), v/cm^{-1} : 963, 1090, 1123, 1159, 1197, 1386, 1453, 1467, 2818, 2875, 2932, 2959.

18-[1*S*-Hydroxymethyl-2-(4-hydroxyphenyl)ethylamino]-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (10). Amorphous powder. Found, m/z: 627.3646 [M]⁺. $C_{35}H_{51}N_2O_8$. Calculated: M 627.3645. ¹H NMR, δ: 0.98 (t, 3 H, NCH₂CH₃, J = 7.1 Hz); 3.20 (6 H), 3.29 (3 H) and 3.37 (3 H) (all s, 1-, 6-, 14-, and 16-OMe); 4.99 and 5.00 (both s, each 1 H, OCH₂O); 6.72 (dm, 2 H, J = 8.2 Hz) and 6.94 (dm, 2 H, J = 8.2 Hz) (AA´BB´ system, H(3″), H(5″) and H(2″), H(6″), respectively). IR (KBr), v/cm^{-1} : 1089, 1120, 1199, 1227, 1265, 1449, 1516, 2819, 2881, 2930, 2965. UV (EtOH), $λ_{max}/nm$ (logε): 225 (3.92) and 280 (3.20).

18-[1*S*-Hydroxymethyl-3-(methylthio)propylamino]-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (11). Thick oil. Found, m/z: 596.4 [M]⁺. C₃₁H₅₂N₂O₇S. Calculated: M = 596.4. For a fragment ion, found, m/z: 565.3312. C₃₁H₅₂N₂O₇S - OCH₃ = C₃₀H₄₉N₂O₆S. Calculated: M = 565.3311. ¹H NMR, δ: 0.95 (t, 3 H, NCH₂CH₃, J = 7 Hz); 2.01 (s, 3 H, SMe); 3.15, 3.24, 3.27, 3.32 (all s, each 3 H, 1-, 6-, 14-, and 16-OMe); 4.94 and 4.96 (both s, each 1 H, OCH₂O). IR (KBr), v/cm⁻¹: 732, 911, 963, 1046, 1090, 1120, 1160, 1197, 1446, 1464, 2820, 2881, 2921. UV (EtOH), $λ_{max}$ /nm (logε): 219 (3.95).

N-Methylation of compounds 9, 10 and 14. A solution of the substrate (1 mmol) in 1.2 mL of MeI was sealed and kept at 20 °C for 72 h. Excess MeI was removed, and the residue was dissolved in 2.5 mL of CHCl₃ and washed with 0.15 mL of 25% NH₄OH. The organic layer was separated, the solvent was removed, and the residue was dried *in vacuo* at 50 °C (3 Torr).

18-[*N*-(1*S*-Hydroxymethyl-2-methylpropyl)-*N*-methylamino]-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (12). Thick oil, $[\alpha]_{578}^{20}$ –34 (*c* 1.5, CHCl₃). For the fragment ion, found m/z: 547.3743. $C_{32}H_{54}N_2O_7$ – OCH₃ = $C_{31}H_{51}N_2O_6$. Calculated: M 547.3747. ¹H NMR, δ: 0.77 and 0.95 (both d, each 3 H, C(2′)Me₂, J = 6.5 Hz); 0.98 (t, 3 H, NCH₂Me, J = 7.0 Hz); 2.27 (s, 3 H, NMe); 3.19, 3.28, 3.32, 3.37 (all s, each 3 H, 1-, 6-, 14-, and 16-OMe); 4.99 and 5.03 (both s, each 1 H, OCH₂O). IR (KBr), ν/cm⁻¹: 731, 962, 1010, 1121, 1161, 1198, 1386, 1449, 1469, 2817, 2883 and 2933.

18-{*N*-[1*S*-Hydroxymethyl-2-(4-hydroxyphenyl)ethyl]-*N*-methylamino}-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (13). Amorphous powder, $[\alpha]_{578}^{20}$ –33 (*c* 4.2, CHCl₃). For the fragment ion, found *m/z*: 611.3662. C₃₆H₅₃N₂O₈ – CH₂O = C₃₅H₅₁N₂O₈. Calculated: M 611.3696. ¹H NMR, δ: 0.98 (t, 3 H, NCH₂Me, *J* = 7.1 Hz); 2.31 (s, 3 H, NMe); 3.22, 3.29, 3.30 and 3.38 (all s, each 3 H, 1-, 6-, 14-, and 16-OMe); 4.99 and 5.03 (both s, each 1 H, OCH₂O); 6.69 (dm, 2 H, *J* = 8.2 Hz) and 6.89 (dm, 2 H, *J* = 8.2 Hz) (AA΄BB΄ system, H(3"), H(5") and H(2"), H(6"), respectively). IR (KBr), v/cm⁻¹: 732, 962, 1033, 1090, 1116, 1162, 1199, 1450, 1516, 2819, 2883 and 2932. UV (EtOH), λ_{max} /nm (logε): 224 (3.80) and 280 (3.04).

18-Dimethylamino-7,8-methylenedioxy-1α,6β,14α,16β-tetramethoxy-20-ethylaconitane (**15**). Thick oil. Found, m/z: 506.3345 [M]⁺. $C_{28}H_{46}N_2O_6$. Calculated: M 506.3366. ¹H NMR, δ: 0.86 (t, 3 H, NCH₂Me, J=7.1 Hz); 3.05, 3.14, 3.22, 3.28 (all s, each 3 H, 1-, 6-, 14-, and 16-OMe); 3.43 (s, 6 H, NMe₂); 4.83 and 4.88 (both s, each 1 H, OCH₂O). IR (KBr), v/cm^{-1} : 731, 753, 920, 950, 964, 1007, 1088, 1117, 1161, 1199, 1227, 1386, 1450, 1469, 2821, 1881, 2933, 2971. UV (EtOH), $λ_{max}/nm$ (logε): 219 (3.95).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 01-03-32431).

References

- 1. N. V. Anferova, I. Yu. Bagryanskaya, Yu. V. Gatilov, J. Ganbaatar, S. A. Osadchii, E. E. Shults, and G. A. Tolstikov, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 1812 [Russ. Chem. Bull., Int. Ed., 2002, 51, 1965].
- 2. J. Ganbaatar, D. Batsuren, S. A. Osadchii, E. E. Shults, and G. A. Tolstikov, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 497 [*Russ. Chem. Bull., Int. Ed.*, 2002, **51**, 535].
- M. S. Rabinovich, Zh. Obshch. Khim., 1954, 24, 2242 [J. Gen. Chem. USSR, 1954, 24 (Engl. Transl.)].
- H. O. Kalinowski, S. Berger, and S. Braun, ¹³C-NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart—New York, 1984, S. 47; 63.
- S. A. Osadchii, N. A. Pankrushina, M. M. Shakirov, E. E. Shults, and G. A. Tolstikov, *Izv. Akad. Nauk, Ser. Khim.*, 2000, 552 [Russ. Chem. Bull., Int. Ed., 2000, 49, 557].
- S. A. Osadchii, E. E. Shults, and G. A. Tolstikov, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 868 [*Russ. Chem. Bull., Int. Ed.*, 2001, 50, 907].
- R. Schwyzer, B. Iselin, H. Kapeller, B. Riniker, W. Bittel, and U. Zuber, *Helv. Chim. Acta*, 1958, 41, 1273.
- K. Weil and W. Kuhn, Helv. Chim. Acta, 1944, 27, 1648; Chem. Abstrs., 1946, 40, 2170⁵.
- 9. Fluka Catalogue, 1995—1996, p. 61.
- E. Fischer, Justus Liebigs Ann. Chem., 1907, 354, 34; Ber. Deutsch. Chem. Ges., 1908, 41, 855, Anm. 2.
- 11. M. Brenner and R. W. Pfister, *Helv. Chim. Acta*, 1951, **34**, 2085.
- A. I. Meyers, D. A. Dickman, and T. R. Bailey, *J. Am. Chem. Soc.*, 1985, 107, 7974.
- M. J. McKennon, A. I. Mayers, K. Drauz, and M. Schwarm, J. Org. Chem., 1993, 58, 3568.
- 14. P. Karrer, P. Portmann, and M. Suter, *Helv. Chim. Acta*, 1949, **32**, 1156.
- A. Dornow, G. Messwarb, and H. H. Frey, *Chem. Ber.*, 1950, 83, 445.
- 16. R. R. Gebhard and P. Karrer, Helv. Chim. Acta, 1955, 38, 915.
- H. Seki, K. Koga, H. Matsuo, S. Ohki, I. Matsuo, and S. Yamada, *Chem. Pharm. Bull.*, 1965, 13, 995.
- 18. V. A. Semikolenov, I. L. Simakova, and G. V. Sadovnichii, *Khim. prom-t'* [*Chem. Ind.*], 1996, No. 3, 184 (in Russian).

Received June 14, 2002